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ABSTRACT: Trichoderma Spp. are the most widely used biofungicides the world over. These mycoparasitic fungi are 
effective against several pathogens that cause seed and seedling rot, foliar infections as well as post-harvest decay. We have 
been working on a particular species of Trichoderma {Trichoderma virens) for more than three decades and found it to be 
one of the most effective biocontrol agents against soil-borne pathogens like Sclerotium folfsii, Rhizoctonia solani, Fusarium 
oxysporum and Pythium spp. In this brief review, I will discuss the progress and potential of biocontrol of Trichoderma virens 
with special emphasis on the strain (IMI 304061) isolated and developed by our group. Two distinct strains of T. virens have 
been reported - the "Q" strains that produce copious amounts of the antibiotic gliotoxin and the "P" strains that do not produce 
gliotoxin, but instead produce gliovirin. Our strain belongs to "P" group and is a very rapid colonizer of the sclerotia of S. rolfsii 
and R. solani, and this mode of antagonism plays an important role in bringing down the inoculum potential. This strain is also 
effective as an inducer of systemic resistance in plants. Recent advances in molecular genetics have enabled understanding the 
molecular mechanism of biocontrol and our strain has emerged as a model system in fungal-fungal interactions. Several cDNA, 
cosmid and BAC libraries have been constructed, ESTs sequences deposited. The role of two mitogen-activated protein kinase 
(MAPKs) has been studied. The TmkA pathogenicity MAPK was found to be involved in repression of conidiation, parasitism 
of sclerotia and induced resistance response in plants. Another MAPK, the TmkB cell integrity kinase was also involved in 
repression of conidiation in addition to antagonistic properties and cell wall integrity. Similarly, a G-protein alpha subunit 
TgaA was found to be involved in antagonism, though in a host selective manner. Interestingly, even though the two G-proteins 
studied had no major effects on growth of the fungus, deletion of Tacl, the adenylate cyclase, drastically affected the growth. 
Deletion of Tad also affected the production of antifungal compounds viridin and viridiol. In addition to functional studies, 
using suppression subtractive hybridization (SSH), genes have been identified that are regulated during MAPK signaling as 
well as secondary metabolism. These data have opened up enormous potential for genetic improvements of these strains. 
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Introduction 
Trichoderma spp. (perfect stage, where known, belongs 
to Hypocrea) are widely used as biofungicides. Accord­
ing to a recent estimate, about 60% of all globally regis­
tered biofungicides are Trichoderma based.' It is there­
fore obvious that Trichoderma spp. have become an 
integrated component of the agriculture world. Despite 
the fact that Trichoderma spp. are, in many cases, not as 
effective as chemical fungicides due to the living nature 
of formulations, their perfonnances are often influenced 
by several biotic and abiotic factors. There is thus a vast 
scope for genetic enhancement of these biocontrol agents. 
Here, an understanding of the mechanisms would play 
an important role in devising strategies for strain selec­
tion and improvement based on the knowledge of genet-
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ics. Several species of Trichoderma are being used for 
biocontrol and Trichoderma virens (earlier Gliocladium 
virens) is one of the successful commercial biocontrol 
agents (Table 1). T virens strains have been classified 
essentially based on their ability to produce gliotoxin or 
gliovirin.- The strains producing gliotoxin are classified 
as "Q" strains, and the ones that produce gliovirin are T. 
virens 29-8 (isolated at Texas A&M University) and T. 
virens strain GVW (IMI 304061) isolated by us at Pant-
nagar.' The purpose of this study is to outline the prog­
ress made with biological control and the mechanisms of 
biocontrol mediated by Trichoderma virens IMI 304061 
in the past few decades. 

Isolation of T. virens IMI 304061 (GVW) from 
Soil and Its Biocontrol Properties 
While doing a pot experiment in greenhouse on optimi­
zation of inoculum dose for Sclerotium rolfsii (inoculat­
ed to soil as pre-colonized sorghum grains), we observed 
some mycoprasite growing on the colonies of this patho­
gen. The growth was so prolific that witin 7 days, the 
entire colonies of the pathogen were wiped off (Fig. 1). 
This green fungus was isolated, purified, identified and 

UTS March 2013 



MUKHOPADHYAY 

Table 1: Selected examples of successful biological control by Trichoderma virens 

Crop(s) Pathogen(s) References or further reading 
Cotton 

Cabbage 

Seasame 

Apple 

Tomato 

Various pulses and 
oil seed crops 

Field pea 

Tomato 

Poinsettias 

Tomato, carrot 

Lettuce 

Cotton 

Eggplant 

Bell pepper 

Sunflower 

Cotton 

Gladiolus 

Lentil 

Catharanthus 

Soybean 

Peanut 

Chickpea 

Sunnhemp, mungbean 

Soybean 

Rice 

Tomato 

Tea 

Pythium ultimum, Rhizoctonia solani 

P. ultimum, R. solani 

Fusarium oxysporum 

Phytophthora cactorum 

Sclemtium rolfsii 

S. rolfsii, R. solani, F. oxysporum 

R. solani 

P. aphanidermatum 

Pythium sp., R. solani 

S. rolfsii 

Sclerotinia sclerotiorum 

F. oxysporum 

R. solani 

S. rolfsii 

Sclerotinia minor 

Verticil Hum dahliae 

Fusarium oxysporum 

S. rolfsii, R. solani, F. oxysporum 

P. ultimum 

Seed and seedling rot pathogens 

Macrophomina phaseolina 

S. rolfsii, R. solani, F oxysporum 

Pythium aphanidermatum, S. rolfsii 

R. solani 

R. solani 

F. oxysporum 

Proia, Black rot 

Howell (1982); Howell (1991); Lewis & Papavizas 
(1991) 

Lumsden& Locke (1989) 

Kange?a/. (1989) 

Smith e? a/. (1990) 

Ristainoe/a/. (1991) 

Mukhopadhyay et al. (1992) 

Hwant & Chakravarty (1993) 

De & Mukhopadhyay (1994) 

Newman e? a/. (1994) 

Ristainoe/fl/. (1994) 

Budges etal. (1995) 

Zhang e? a/. (1996) 

Lewis &Larkin (1997) 

Ristainoe/a/. (1996) 

Burgess & Hepworth (1996) 

Hanson (2000) 

Misra et al. (2000) 

Singh & Mukhopathyay (2000) 

Burns & Benson (2000) 

Pant & Mukhopadhyay (2001) 

Maheshwari etal. (2001) 

Tewari et al. (2002); Tewari & Mukhopadhyay (2003) 

Piriyaprin et al. (2007) 

Baikal (2008) 

Liu e/a/. (2010) 

Christophers?a/. (2010) 

Barthakur et al. (in press; submitted in Int J Tea Sci) 

deposited with IMI as T. virens IMI 304061 (then G. 
virens).'' Subsequently, we developed a selective baiting 
technique based on this observation for isolation of T. 
virens from soil."' A great number of biocontrol assays 
followed in the Biocontrol Laboratory at Pantnagar and 
the efficacy demonstrated in farmers' fields. The first 
report on biocontrol using GVW came in 1992.- Sub­
sequently, it was reported to be effective in controlling a 
variety of pathogens (like Pythium spp., Fusarium spp., 
Rhizoctonia solani and PP5. rolfsii) in several crops.* " 
The efficacy of this strain has also been demonstrated in 
farmers' field. This strain has thus proved to be an ideal 
model system for studies on the genetic mechanisms as 
illustrated in the following sections. 

Mechanisms of Biocontrol 
Trichoderma spp. can help reduce crop damage directly 
by suppressing the pathogen or indirectly by boosting 
plant immunity." The direct effects include mycopara-
sitism and production of antiftingal metabolites. Again, 
the mycoparasitism could be of the resting structures or 
the active hyphae. The indirect effects include improving 
plant defenses through the production of elicitor mol­
ecules or through improving the general health of plants 
by increasing nutrients availability." GVW is a very 
effective mycoparasite on the sclerotia of 5'. rolfsii and/?. 
solani, and is a destructive mycoparasite on the hyphae 
of R. solani (Figs. 2 and 3). By comparing a strain of 
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Figure 1. Trichoderma virens IMl 30406Iculture on soil 
(Source: Mukherjee e/a/., 1993). 

Trichoderma harzianum with GVW, Mukherjee et alP 
concluded that parasitism of sclerotia is the principal 
mechanism of biocontrol of GVW on S. rolfsii and R. 
solani. Howell et air classified isolates of T. virens into 
two defined strains: the "P" strains that produce gliovirin 
and the "Q" strains that produce gliotoxin. By HPLC, we 
have confinned that GVW is a "P" strain which does not 
produce gliotoxin, but produces plenty of the antimicro­
bial viridin and viridiol.'" The direct role of antibiosis 
in biocontrol has not been established, but recent work 
on fungal secondary metabolites suggest that they might 
play other roles like induction of defense in plants'"" 
and also in survival potential in soil. In addition to direct 
effects on the pathogens, it has also been established that 
T virens in an inducer of systemic defense responses in 
plants.'""'' 

Molecular Mechanisms of Biocontrol 

Hydrolytic Enzymes 

Hydrolytic enzymes play important roles in biocontrol, 
and among the hydrolytic enzymes, are chitinases and 
glucanases. In order to understand the role of the 42-kDa 
endochitinase, the coding gene ech42 was deleted or 
over-expressed in T. virens. As a consequence, the bio­
control potential against R. solani in cotton were sig­
nificantly decreased and enhanced, respectively." The 
overexpression of a serine-protease encoding gene tvspl 
significantly enhanced the ability of T. virens to protect 
cotton seedling against Rhizoctonia solaniJ^ Constitu­
tive overexpression of two P-glunasase genes tvhgn2 
and h'bgnS improved the biocontrol potential of T. virens 
against P. ultimum, Rhizopus oryzae and Rhizoctonia 

Figure 2. Mycoparacitism of Trichoderma virens on 
Rhizoctonia solani. 

solani.^'' Recently, the role of a laccase gene led in scle-
rotial parasitism has been suggested.^" 

Signal Transduction 

Cellular signalling plays an important role in sensing the 
environment as well as hosts. Taking cues from plant 
pathogenic fungi on how they sense the host plants dur­
ing pathogenicity, we investigated the roles of the sig­
nalling proteins (G-proteins, adenylate cyclase, MAP 
kinases) in GVW by gene knockout approach. For this 
purpose, a cosmid and a cDNA library were construct­
ed and an ESTs database (available in the GeneBank) 
developed. Using gene knockout, we have studied the 
role of two MAP kinases, two G-proteins and the ade­
nylate cyclase in growth, morphogenesis and biocontrol 
properties. The deletion of the T. virens MAPK TmkA 
and TmkB both resuUed in de-regulated conidiation.-'--
The loss of TmkA was associated with loss in mycopara-
sitism against the sclerotia of S. rolfsii and partial loss 
in mycoparasitism of R. solani sclerotia. However, the 
hyphal parasitism against this pathogen was un-altered. 
Interestingly, loss of this gene resulted in a reduction in 
ability of GVW to induce systemic resistance against the 
foliar pathogenic baterium Pseudomonas solanacearum 
py. lachrymans in cucumber, and a loss of biocontrol 
against S. rolfsii.^'' Interestingly, deletion of the same 
MAP kinase (Tvkl) improved the biocontrol potential of 
a "Q" strain of T. virens against R. solani and Pythium 
ultimum P These studies thus indicated multiple roles 
of the MAPK pathways in regulation of conidiation and 
biocontrol properties. We have also identified an expan-
sin-like protein Mrspl to be repressed by TmkA MAP 
kinase.-" In contrast to MAP kinases, the deletion of two 
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Figure 3. Paracitism of sclerotia of Sderotium rolfsii 
and Rhizoctonia solani by Trichoderma virens {Source: 
Mukherjee et ah, 1995). 

G-proteins did not have any major effects on the mor­
phogenesis and biocontrol of GVW; although there was 
a reduction in the ability to parasitize the sclerotia of 5. 
rolfsii and R. solani. However, deletion of the adenylate 
cyclase gene {tad) resulted in a drastic effect on growth 
of T virens.-'' The mutants were extremely slow growing, 
had colonial growth habit and also had reduced antibi­
otic potential. Using a suppression subtractive hybrid­
ization (SSH), some genes for secondary metabolism 
that are down-regulated in the mutants were identified. 
These observations indicate that it would be possible to 
manipulate the signalling pathways to fine-tune a bal­
ance between conidia production and biocontrol. 

Secondary Metabolism 

Trichoderma spp. produce more than 100 different sec­
ondary metabolites, some of them having antimicrobi­
al properties.-^ T. virens is one of the most extensively 
studied species for the role of secondary metabolism in 
biocontrol. 7̂  virens isolates are known to produce seven 
major secondary metabolites: the 18-, 14- and 11-residue 
peptaibols, gliotoxin, gliovirin, viridin and viridiol.^'^''-' 
Gliotoxin is produced by the "Q" strains of Z virens-'^ and 
the compound was detected in the rhizosphere.-' How­
ever, the relevance of gliotoxin in biocontrol has not yet 
been clearly established.--"' -̂ Gliovirin, produced by the 
"P" strains has been suggested to be involved in biocon­
trol of Pythiiim spp.'' T. virens also produces the fungi­
static and anti-cancer steroidal compound viridin,- which 
is reduced to viridiol in the same culture and has ber-
bicidal properties.^* Using a non-producing mutant and 

suppression subtractive hybridization (SSH), Mukherjee 
et al.^^ identified a T. virens gene cluster that includes 
the terpene cyclase VIR4 and cytochrome P450s. The 
adenylate cyclase gene tad has recently been demon­
strated to regulate the biosynthesis of bioviridian/viridiol 
and the expression of the genes in this cluster.-'* 

Interaction with Plants 

Many Trichoderma spp. can internally colonize roots and 
develop "intimate" association with plants.''' The "sym­
biosis-like" association is driven by nutrient (sucrose) 
flow from plant to the fungus and induction of resistance 
against invading pathogens by Trichoderma. The role of 
a Trichoderma invertase and a sucrose transporter has 
been studied recently."-"* Interestingly, the hydrolysis 
of sucrose was also important for regulation of the elici-
tor protein Sml. The ability of Trichoderma to enhance 
root growth is well-known, perhaps this also benefits the 
fungus during symbiotic interactions. For long, it was 
speculated that Trichoderma might produce some phyto-
hormones. In a recent publication, Contreras-Comejo et 
al.^'^ demonstrated that T virens produces auxins and they 
also identified genes responsible for auxins biosynthesis 
in this beneficial fungus. Trichoderma spp. induce resis­
tance in plants through the production of elicitor mol­
ecules. The most well-characterized elicitor protein Sml 
is produced by T. virens.''^^^ This is a hydrophobin-like 
small secreted cysteine-rich protein that, in pure form 
can elicit resistance response (production of reactive 
oxygen species, induction of defense-related genes) in 
both monocots and dicots.'*" Using gene deletion, it was 
shown that Sml is required for ISR response in maize,'''' 
and the elicitation potential is dependent on the ability of 
this protein to remian in monomer form.''- In a significant 
development, Sm 1 has been expressed in yeast and puri­
fied in active form.''̂  The role of an 18-residue peptaibol 
in ISR has also been demonstrated.'" 

T. virens as a Source of Transgenes 
The first gene to be transferred from T. virens to plants 
happen to be ech42, the gene encoding a 42-kDa endo-
chitinase.''" Transgenic cotton plants expressing this gene 
showed significant resistance to both Rhizoctonia solani 
and Alternaria alternata. Biochemical and molecular 
analyses showed rapid/greater induction of ROS, expres­
sion of several defense-related genes and activation of 
some PR enzymes and the terpinoid pathway.'"' Interest­
ingly, even in the absence of a challenge from the patho­
gen, the basal activities of some of the defense-related 
genes and enzymes were higher in the endochitinase-
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expressing cotton plants. This elevated defensive state of 
the transformants may act synergistically with the potent, 
transgene-encoded endochitinase activity to confer a 
strong resistance to R. solani infection. The same gene 
was also introduced in rice, and high level of resistance 
against R. solani could be obtained.'*^ We have cloned an 
ech42 gene from our isolate of T. virens and expressed 
in transgenic tobacco and tomato.'"* The transgenic 
plants exhibited resistance against the fungal pathogens 
Alternaria alternata, Botrytis cinerea and Sclerotinia 
sclerotiorum. In another significant finding, a glutathi­
one transferase gene from T. virens (TvGST) was cloned 
and transferred to transgenic tobacco. The transgenic 
plants, thus generated, were tolerant to several abiotic 
stresses including cadmium and the pollutant chemi­
cal anthracene.'*'*-^" The transgenic plants, under stress, 
showed lower levels of lipid peroxidation, compared to 
non-transgenic plants. The transgenic plants not only tol­
erated high levels of anthracene, but also degraded it to 
non-toxic naphthalene derivatives.-" 

Future Outlook 
Trichoderma spp. are undoubtedly the most successful 
biocontrol agents utilized all over the world. In India 
alone, there are nearly 300 commercial Trichoderma-
based biogungicides. The tremendous success of Tricho­
derma in the past three decades has turned the critics into 
admirers of biocontrol. Biological control with Tricho­
derma is no more a myth, but a reality, and this "gift of 
God to mankind" is here to stay as a main component 
of not only plant disease contro, but also overall crop 
management. Trichoderma spp. being active not only 
as antagonists, but its all-out impact on soil and plant 
health, including growth promotion, improved nutrients 
update, imparting resistance to biotic and abiotic stress­
es, bioremediation, and many more desired attributes. 
The era of genomics has set in and the sequence of T 
virens has recently been published {http://genome.jgi-
psforg/TriviGv2982/TriviGv29 8 2.home.html). It is 
now up to the scientists to make use o these huge data to 
understand in further details the mechanisms of action 
of Trichoderma on plants and pathogens and to design 
novel strains with improved potential. 
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